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A Crossover Description for the Thermodynamic 
Properties of Fluids in the Critical Region 1 

P. C. Albright, 2 J. V. Sengers, 2'3 J. F. Nicol l ,  4 and M. Ley-Koo 5 

We have developed a "crossover" formalism that reconciles the singular 
asymptotic critical behavior of the thermodynamic properties of fluids with the 
classical behavior of these properties well away from the critical point. The 
proposed formalism is based on theoretical predictions for the crossover 
behavior suggested by the renormalization-group theory of critical phenomena. 
We demonstrate the formalism for a fluid whose classical behavior away from 
the critical point is represented by the equation of state of van der Waals. 
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1. I N T R O D U C T I O N  

There  has a lways  been an interest  in the accurate  descr ip t ion  of the ther- 
mophys ica l  p roper t ies  of fluids. Much  effort has been expended  on the con- 
s t ruct ion  of equa t ions  of state; the simplest  examples  include the equat ions  

of van der  Waals ,  Berthelot ,  and  Dieter ici  [1 ] .  These so-cal led classical 
equat ions  all show the existence of a cri t ical  point ;  nevertheless,  they do  
not  predic t  the nonanaly t ic i t ies  tha t  are seen in real systems [2] .  The 
r eno rma l i za t i on -g roup  ( R G )  theory  of Wi l son  [3 ] ,  F i sher  [ 4 ] ,  and  
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Wegner [5], on the other hand, does properly deal with the critical fluc- 
tuations and yields a description in terms of scaling laws in the vicinity of 
the critical point. Unfortunately, these scaling laws appear to be valid only 
in a region extremely close to the critical point, and they cannot be 
extrapolated away from it [6]. The goal of determining in a physically con- 
sistent manner a valid description for fluid systems legitimate near the 
critical point as well as away from it defines the crossover problem that is 
addressed in this paper. 

2. CLASSICAL THEORY 

The classical theories have as a common feature the analytic expan- 
sion of the free energy about the critical point into a Landau series [7]. 
For example, near the critical point the mean-field Gibbs free energy of a 
symmetric magnet may be written as 

1 u 4 
GMv(t, h, u; m ) = - z  tm2 +-;; m - hm 

Z l4 { 
(1) 

where t is proportional to the temperature difference T - T o ,  h is the 
magnetic field, and m is the order parameter. In this example, rn is the 
magnetization. In a fluid m is related to the density difference p -  po, while 
h corresponds to the chemical potential difference # -  #(Pc, T). The coef- 
ficient u is a coupling constant characteristic of the system. 

The mean-field theory yields a thermodynamic behavior near the 
critical point which is incompatible with experiment [2]. It should be 
emphasized, however, that away from the critical point the mean-field 
assumptions are plausible, and in fact classical equations do work outside 
the critical region. 

3. ASYMPTOTIC CRITICAL BEHAVIOR 

The asymptotic critical behavior of the thermodynamic properties can 
be described in terms of scaling laws initially developed 
phenomenologically by Widom [8]. The renormalization-group theory has 
yielded theoretical predictions for the scaling functions and critical 
exponents [9, 10]; the theory can be extended by the addition of Wegner 
correction-to-scaling terms [11]. In this form the theory has been quite 
successful in representing the thermodynamic properties of fluids in the 
critical region [ 12]. 

Nevertheless, this approach has a number of shortcomings. First, the 
scaled equations have a limited range of validity. Second, the RG theory 
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reveals the presence of nonscaling features arising in properties such as the 
specific heat [13, 14]. The crossover theory presented here reduces to the 
Wegner series near the critical point and to the classical mean-field 
behavior away from the critical region. Furthermore, the nonscaling 
features mentioned above arise naturally within the theory. 

4. THE C R O S S O V E R  T H E O R Y  

The basic notion of Wilson's original formulation of the renor- 
realization-group theory is that most fluctuations contribute to the critical 
behavior and must be accounted for. However, there are degrees of 
freedom that do not contribute. For example, we do not expect such things 
as the molecular shape and the extent of hydrogen bonding among 
molecules to affect the essential feature of the critical behavior (i.e., that the 
system is undergoing large-scale fluctuations). These short-wavelength 
features will affect the nonuniversal aspects such as the location of the 
critical point but do not couple with the rest of the fluctuations. Thus, we 
expect to be able to divide the modes of the system into those that are of a 
short range and a relatively high frequency, which are not strongly 
coupled, and those of a longer wavelength, which do couple strongly and 
hence lead to the essential (and universal) nonanalytic behavior near the 
critical point. 

This implies, then, that there is a cutoff A in those wave numbers that 
must be considered when determining the fluctuation-dominated behavior 
of the system. The original technique proposed by Wilson was to rescale 
successively the lengths in the system in such a way that the correlation 
length ~ becomes of the order of the scale of the cutoff; the resultant theory 
(with now renormalized parameters) may then be dealt with classically. 
Within the RG theory this heuristic procedure has been carried out for the 
case of the symmetric magnet [15], as well as for asymmetric systems 
[16]. 

In these calculations it is initially desirable to ignore the nontrivial 
contributions from the cutoff. In the asymptotic critical region, of course, 
the dominant length scale is the correlation length, and thus the cutoff is 
unimportant except as a trivial measure of the length scale. In this region 
we therefore ignore contributions of order 1/(~A) 2. However, in regions 
further away from the critical point, where ~A ~ 1, these terms will not be 
trivial. A crossover theory which does not account for the transition to the 
region dominated by the cutoff must fail, since it represents only the sum- 
mation of the Wegner series (i.e., a summation of those terms which are 
independent of the scale of the cutoff). The effect of ignoring the cutoff may 
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be repaired, however, by requiring the crossover theory to agree in the 
appropriate limit with the exactly soluble spherical model [ 17, 18 ]. 

5. APPLICATION TO A VAN DER WAALS GAS 

As stated in the Introduction, our goal is to model the crossover 
behavior in fluids. Although the theory alluded to above deals with the 
magnetic case, universality arguments enable us to use these results in 
fluids [-2]. The analogy between the magnetic Ising model and the lattice 
gas suggests that the Gibbs free energy of a magnetic system, as a function 
of the temperature T and magnetic field, corresponds to the pressure P, 
taken as a function of the temperature T and chemical potential # of the 
fluid [2]. More specifically, we take the potential P =  (P/T) (TJPc)  as a 
function of t=  ( T -  Tc)/T and Ail = [-#(p, T) -#0(T) ] ,  where/to(T) is the 
classical form for the chemical potential at p = Pc above Tc and its analytic 
continuation below To. 

As an illustration we demonstrate the crossover methodology for a 
fluid whose classical behavior is represented by the van der Waals equation 

P -  Tp aP 2 (2) 
1 - bp 

where a and b are constants. As a first step we define the singular part Ps of 
the potential by - P s - -  - P  + 1 + Aft + 3t and derive from Eq. (2) 

F I + 6 p ]  
- P s = ~  (1 +6p) In  [_1 - �89  - 4 6 p - 3 ( 6 p ) 2 +  3 t (6p)2-SpAi l  (3) 

where g)P=(P-Pc)/Pc.  In deducing Eq. (3), we identified the critical 
parameters Pc, To, and Pc with those implied by the van der Waals 
equation, Eq. (2). In practice, we use Eq. (3) in terms of the actual critical 
parameters, which differ from those implied by the classical equation. The 
crossover formalism presented here accounts for an apparent shift in the 
critical parameters from the values implied by a classical theory in its 
region of validity [18, 19]. 

Expanding Eq. (3) about the critical point, we find 

~ , . ~ l t ' m 2  u . u v  . + - - m ~ + - - m ~ - h m  - P s ~  4! 5! 

where 

v = - (u /9 )  1/4, 

(4) 

t' = 6v2t, m = -6p/v ,  h = -vAi l  (5) 
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This illustrates the reason for the definition of Ps; it is this part of the 
classical potential that contains the Landau series, Eq. (1). In this form we 
can substitute the results predicted by a RG analysis of the crossover 
behavior of the Landau series. Specifically, we find [18] 

{~[ , / l + R 6 p ,  ( 1 - R 6 p ~  
-P~= (I+R6p)m~i-�89189 j 

1 z - 3R2(6p) 2 + 3t~Y-~(6p) 2 - ~  t K} 

+ql 1/4"r ln(I+R6P~j 

( 1 -  R6p ~ - 4 R 6 p }  
- (1 - R6p)In \1- ~-�89 J 

2 
3 u(tAfi6m + 6t26p6h) -- c3pAfi (6) 

where 

and 

y = y(2 1/~)/o~, ~l[ = Y I / o .  ~ = y - , / . o .  

, , (7) 

I Y ~/~-1 y1 ~ / a _ l q  
K=Ao / 

6m=EI(Y e~- 1) + E2(Y ~ '+~-  1) (8) 

6h=Fl(Y f l -  1)q-F2(Y f l+ l -1 )  

with el = (fl + d 5 - 1 )/A and ./'i = (A s + f16 - 2 flA. 
Here, ~, fl, 6, v, and ~/ are the usual Ising critical exponents that 

characterize the asymptotic behavior of the thermodynamic properties and 
the correlation function [2], d = o~v~0.5 is the first Wegner correction-to- 
scaling exponent, and d s'~l.2 is the first asymmetric Wegner exponent 
[11, 20]. Ao, A1, El,  E2, F1, and F2 are constants; the values of some of 
these are constrained by universal amplitude ratios [16, 18]. The function 
Y is a crossover function which is related to the inverse correlation length 
x = ~ - i  by 

[( , K-A 2"~ ~/2 11 y- l= 
1 + ~ L \ I  +---7 / - (9) 

840,'7,'1-6 
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The parameter x is a measure of the distance from the critical point; in the 
limit K/A ~ 0 we recover the singular asymptotic critical behavior, while in 
the limit x /A  --. oe we recover the classical behavior. 

The behavior of the crossover function, Eq. (9), is governed by the two 
parameters ~ and A; A is a measure of the cutoff wave number for the 
critical fluctuations, and ~ = u/u*, where u* is the fixed-point value of the 
coupling constant [,-17]. These two parameters have distinct physical con- 
sequences. The constant fi is related to the rate of convergence of the 
Wegner series [-21]; when 2 =  1, for example, there are no correction-to- 
scaling terms for a system described by Eq. (1), and thus such a system 
exhibits pure power-law behavior throughout the critical region. The 
parameter A, on the other hand, determines the region of validity of the 
critical (Wegner) theory; when ~c~A the correlation length is of the order 
of the cutoff, the system is no longer governed by strongly coupled fluc- 
tuations, and we expect classical behavior. 

It should be noted that a pure fluid system does not exhibit the vapor- 
liquid symmetry of the lattice gas; this is reflected by the presence of the m 5 
term in Eq. (4) as opposed to Eq. (1). A RG analysis [,16] shows that there 
are two consequences of this lack of symmetry for the critical behavior. The 
first, called mixing, corresponds to a rotation of the thermodynamic axes in 
the temperature-chemical potential plane. For simplicity, we have here 
ignored this effect, noting that the associated coupling constant appears to 
be small [12]. The second consequence leads to a new correction-to- 
scaling term with exponent A5 and, furthermore, has global consequences, 
since this effect is responsible for the linear coexistence-curve diameter in 
the classical limit [19]. We have therefore included this term in our cross- 
over potential given by Eq. (6). 

In order to specify the crossover potential given by Eq. (6) completely, 
we must determine the dependence of the distance parameter ~: on the tem- 
perature and density. We find that as a first approximation [17, 18] 

x z = t~-- + ~ q l ~ ( 6 p )  2 (10) 

which defines implicitly the crossover function Y given by Eq. (9). 
In the potential given by Eq. (6), the functions K, 6m, and 6h embody 

the nonscaling behavior of the critical free energy [-15, 17, 21]. Note that 
only in the limit Y ~  1 (i.e., the classical limit) is it possible to separate a 
genuine analytic background term oct 2 in the free energy from the analytic 
fluctuation-driven term oct 2 contributed by the nonscaling term K. An 
asymptotic (i.e., noncrossover) theory cannot resolve this ambiguity. The 
other nonscaling contributions, 6h and 6m, lead to similar effects. 
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The crossover potential presented in this section satisfies the following 
set of properties. First, the asymptotic critical behavior is reproduced in 
detail; the Wegner series is, to lowest order, completely contained in the 
crossover function. The effect of asymmetries is easily included; the theory 
is in full accord with the phenomenological scaling theory of Ley-Koo and 
Green [11]. Second, the nonscaling behavior necessary in interpreting, for 
example, specific heat experiments [13] is predicted. Third, the theory is 
fully consonant with RG results; predicted amplitude ratios, for example, 
are automatically contained in the potential given by Eq.(6) [15]. 
Approximations are controlled; it is possible to include higher-order effects 
in a straightforward manner [18]. Finally, the transition is made to the 
classical behavior in a physically intuitive manner; the phenomenology of 
the crossover, such as the shift in the apparent critical point, is replicated 
as well. 

6. DISCUSSION 

Using, then, Eqs. (6)-(10), we have generated an expression for the 
van der Waals fluid that will correctly reproduce the entire Wegner series 
in the critical region up to terms linear in the asymmetric coupling constant 
yet which makes the transition to the classical regime in a theoretically 
consistent manner. Using the simplest form for the crossover functions, we 
have plotted the behavior of various thermodynamic functions in Figs. 1 4  
[183. 

Figure 1 shows the behavior of the crossover function Y along the 
critical isochore for two values of fi; we have arbitrarily set A2=0.1 

I 

I0 -I 

Io-2 

i() 3 f i i i i 
10 -8 10- 7 10 -6 10-5 iO-4 10-3 10 -2 i0-1 

t = ( T -T c ) / T  

Fig. l .  L o ~ l o g  plot  o f  the crossover function Y vs reduced temperature t > 0 
a long the critical isochore,  for two values of  ;2. A 2 is taken  to be 0.1. The  dashed  
line shows  asympto t i c  power- law behavior ;  the dot ted line, the effect of con-  
sidering the first W egn e r  correct ion as well. Also shown  is the l imit ing classical 
behavior ,  Y =  1. 
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throughout. Up to the region where K~A, the function Y represents a sum- 
mation of the entire Wegner series. When fi = 1, there will be no Wegner 
correction terms generated; the critical theory yields pure power-law 
behavior. However, as x,-~A, the system may no longer be thought of as 
critical, and the system crosses over to the classical limit Y= 1. In the case 
for which ~7 = 0.01, the system will show power-law behavior over a limited 
range (dashed line); the effect of including just the first Wegner correction 
term is also shown (dotted line). Note that there is a region over which the 
system appears to exhibit pure power-law behavior (i.e., the graph appears 
linear), well into the range where the first Wegner correction is important. 
Data analyzed in this region could easily seem to show such power-law 
behavior but with exponents a few percent above the actual (and expected) 
asymptotic results. Thus, great care must be taken in interpreting results 
from measurements taken in the critical region. Such "effective exponents" 
(e.g., fl,~0.35) will be nonuniversal, varying from substance to substance as 

varies, and, of course, range dependent. 
In Fig. 2, we show the coexistence curve for our crossover van der 

Waals model. The solid curve represents the coexistence curve crossing 
over from its classical behavior far away from the critical temperature to its 
Ising-like asymptotic power-law behavior very close to the critical tem- 
perature. Note that the location of the true critical point is shifted from the 
value implied by the classical van der Waals equation, a phenomenon 
noticed by many investigators when analyzing experimental data [22]. 

+5.0x10 4 ~ t ~ l t ~ l ~ l l ~ l ~ l ~  

I 

v 

, i  
4 -  

/ \ 
/ \ 

! \ 

-0.05 0 +0.05 +0.10 

(p-pc)/,Oc 
Fig. 2. Plot of the coexistence curve of the crossover van der Waals model. 
The dashed line denotes expected classical behavior; the dotted line, the 
asymptotic power law. A 2=  z7 = 0.1. 
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I 0 :  i0  ~ 

i0  I 

t I l I 1 t I ------,------'------'-----'---'--- i 

-I -10 -2 -10 -4 -10 -6 10 -6 10 -4 10 -2 I 

t =(T-Tc)/T 

Fig. 3. Log-log plot of the specific heat at constant density for the crossover van 
der Waals model with ideal-gas background, along the critical isochore above and 
below the critical temperature. The dashed line shows expected classical behavior. 
A 2 = ~ = 0 . 1 .  

Figure 3 shows the specific heat at constant volume at p = po both above 
and below the critical temperature; for simplicity, we have assumed an 
ideal-gas background in Cv. Here, the nonscaling behavior due to the 
function K is clearly evident; the singular specific heat crosses over to dif- 
ferent values in the classical limit above and below To as is necessary to 
obtain agreement with experiment [ 13 ]. 

Figure 4 demonstrates an affect of the asymmetric contributions to the 
free energy and shows the necessity for defining the scaling field A/~ 
carefully; we have required that it be zero along the critical isochore in the 
classical region. In the classical theory there is a jump discontinuity in the 
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z--~ 0.6 
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0.0 
I I I I I I I r I t 

i0- ~0 10-8 10-6 10-4 10-2 

I t l  

Fig. 4. Semilog plot of IAfq/t 2 vs t. The upper graph is for the 
coexistence line; the lower graph, for the critical isochore. The dashed 
line shows the limiting critical behavior; the broken line, the classical 
limits. A 2 = ff = 0 .1 .  
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second derivative at the critical point [2]; in the asymptotic critical limit, 
however, the crossover theory predicts a continuous second derivative as 
required by naive scaling theory [11]. 

7. SUMMARY 

We have presented here a crossover theory that is derivable from and 
fully consistent with the renormalization-group theory. By construction, 
the leading as well as correction-to-scaling terms in the critical region are 
correctly generated, as are the nonscaling contributions crucial to 
understanding, for example, the specific heat. The theory introduces the 
constants z7 and A, which determine the size of the asymptotic scaling 
region and the limit of validity for the Wegner series, respectively. Also by 
construction, the theory correctly reproduces the classical limit. 

Finally, the consistency of the theory with RG calculations frees the 
theory from the anomalous behavior associated with the switching function 
approach [23] and from the lack of internal consistency associated with 
phenomenological crossover models [24, 25]. The theory does not have to 
be altered, for example, in order to generate the correct Wegner amplitudes 
and nonscaling behavior. 

It remains, of course, to compare the predictions of the theory with 
experiment. In progress is a comparison with experimental data for carbon 
dioxide. In addition, it is expected that the theory can be easily extended to 
fluid mixtures. This work is also in progress. 
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